电竞比赛押注平台app

English
  • 鏍″洯鍗佹櫙涔嬮箘鏈涘痉娓
  • 绗崄浜屽眾鑳$憲鏂囧寲鑺
  • 娣卞叆瀛︿範璐交鍏氱殑浜屽崄灞婁笁涓叏浼氱簿绁
  • 鐗㈣鍢辨墭 閫愭ⅵ鍓嶈

婀栧笀鏂伴椈

News 鏂伴椈缃
  • 甯傚涔﹁闄堟旦鏉ユ牎涓哄湪婀栭珮鏍″笀鐢熶唬琛ㄤ綔瀹h鎶ュ憡锛堝浘锛
  • 鎴戞牎绗簩鍗佸叚灞婅繍鍔ㄤ細闅嗛噸寮骞曪紙鍥撅級
  • 闈掓槬鈥滄垘鈥濋锛岃妫闃咃紒鎴戞牎涓惧姙2024绾у鐢熷啗璁眹鎶ヨ〃婕旀毃鎬荤粨琛ㄥ桨澶т細锛堝浘锛
  • 鎴戞牎涓捐搴嗙涓崕浜烘皯鍏卞拰鍥芥垚绔75鍛ㄥ勾鍗囧浗鏃椾华寮忥紙鍥撅級
  • 鈥滆瘲姝屽悓澹伴鍏氭仼路閾堕潚鎼烘墜鏂板緛绋嬧濇湕璇典細鍦ㄦ垜鏍′妇琛岋紙鍥撅級
  • 鎴戞牎涓捐2024绾ф柊鐢熷紑瀛﹀吀绀兼毃绗40涓暀甯堣妭搴嗙澶т細锛堝浘锛

瀛︽湳鍔ㄦ

Academic 鏇村+
  • 鍙寔缁彂灞曠爺绌堕櫌鍙紑瀛︽湳濮斿憳浼氫簩灞婁竴娆′細璁

    銆銆12鏈1鏃ワ紝鍙寔缁彂灞曠爺绌堕櫌锛堚滀袱灞扁濈悊蹇电爺绌堕櫌锛夛紙浠ヤ笅绠绉扳滅爺绌堕櫌鈥濓級瀛︽湳濮斿憳浼氫簩灞婁竴娆′細璁簬鍦ㄥ寳浜彫寮銆傛柊涓灞婄爺绌堕櫌鍜ㄨ涓撳銆佸鏈鍛樹細濮斿憳鏉ヨ嚜鍐滀笟鍐滄潙閮ㄣ佷腑鍥界ぞ浼氱瀛﹂櫌銆佷腑澶斂绛栫爺绌跺銆佸浗鍔¢櫌鍙戝睍鐮旂┒涓績銆佷腑鍥界敓鎬佹枃鏄庣爺绌朵笌淇冭繘浼氥佸寳浜敓鎬佹枃鏄庡伐绋嬬爺绌堕櫌銆佹禉姹熺渷濮旀斂鐮斿銆佹禉姹熺渷鍐滀笟鍐滄潙鍘呫佹禉姹熷ぇ瀛︾瓑绉戠爺闄㈡墍鍜岄珮绛夊鏍°傚啘涓氬啘鏉戦儴鍐滄潙缁忔祹鐮旂┒涓績鍘熶富浠诲畫娲繙鎷呬换涓讳换濮斿憳锛屼腑鍥界ぞ浼氱瀛﹂櫌瀛﹂儴濮斿憳銆佷腑鍥界ぞ浼氱瀛﹂櫌鐢熸佹枃鏄庣爺绌舵墍鍏氬涔﹁鏉ㄥ紑蹇狅紝鐮旂┒闄㈤櫌闀裤佹禉姹熷ぇ瀛︿腑鍥藉啘鏉戝彂灞曠爺绌堕櫌棣栧腑涓撳銆佷竴绾ф暀鎺堥粍绁栬緣鎷呬换鍓富浠诲鍛橈紝涓浗鐢熸佺粡娴庡瀛︿細鐞嗕簨闀裤佷腑鍥界ぞ浼氱瀛﹂櫌鍐滄潙鍙戝睍鐮旂┒鎵鍏氬涔﹁鏉滃織闆勶紝鍖椾含娑︾敓鍐滄潙鍙戝睍鍏泭鍩洪噾浼氱悊浜嬮暱銆佸浗鍔¢櫌鍙戝睍鐮旂┒涓績鍐滄潙缁忔祹鐮旂┒閮ㄥ師閮ㄩ暱寰愬皬闈掞紝涓浗鐢熸佹枃鏄庣爺绌朵笌淇冭繘浼氬壇浼氶暱銆佲滀袱灞扁濇櫤搴撹仈鐩熺悊浜嬮暱鍒橀潚鏉撅紝鐮旂┒闄㈠悕瑾夐櫌闀裤佸彂灞曚腑鍥借鍧涘壇涓诲腑鐜嬫櫙鏂帮紝涓ぎ鍐滃姙鍐滀笟鍐滄潙閮ㄤ埂鏉戞尟鍏翠笓瀹跺挩璇㈠濮斿憳銆佸師娴欐睙鐪佸啘涓氬巺鍓功璁般佸壇鍘呴暱璧靛叴娉夛紝娴欐睙鐪佸鏀跨爺瀹ゅ師鍓富浠伙紙姝e巺绾э級閮崰鎭掔瓑鎷呬换濮斿憳銆傘銆棣栧厛锛屼妇琛屼簡鐮旂┒闄㈠挩璇笓瀹躲佸鏈鍛樹細濮斿憳鑱樹换浠紡銆傛牎鍘熷厷濮斾功璁般佺爺绌堕櫌闄㈤暱閲戜僵鍗庝唬琛

  • 鍥藉璇█鏂囧瓧鎺ㄥ箍鍩哄湴涓捐鏂版椂浠e浗瀹惰瑷鏂囧瓧鏀跨瓥瀛︽湳鎶ュ憡

    銆銆涓烘繁鍏ヨ疮褰昏惤瀹炲厷鐨勪簩鍗佸ぇ绮剧锛屽姞澶у浗瀹堕氱敤璇█鏂囧瓧鎺ㄥ箍鍔涘害锛屾繁鍖栧叏鏍″笀鐢熷鏂版椂浠e浗瀹惰瑷鏂囧瓧鏀跨瓥鐨勭悊瑙o紝杩涗竴姝ュ姞寮哄鏍¤瑷鏂囧瓧宸ヤ綔锛11鏈28鏃ワ紝鎴戞牎鍥藉璇█鏂囧瓧鎺ㄥ箍鍩哄湴涓捐鈥滄柊鏃朵唬鍥藉璇█鏂囧瓧鏀跨瓥瑙h鈥濆鏈姤鍛婏紝鏁欒偛閮ㄨ瑷鏂囧瓧搴旂敤鐮旂┒鎵鍓墍闀垮瀹忓簲閭涓昏銆傛姤鍛婁細鐢卞鏍″壇鏍¢暱銆佸浗瀹惰瑷鏂囧瓧鎺ㄥ箍鍩哄湴涓讳换鑸掑織瀹氫富鎸侊紝鏁欏姟澶勩佹牎璇鍔炪佸浗瀹惰瑷鏂囧瓧鎺ㄥ箍鍩哄湴鎴愬憳浠ュ強浜烘枃瀛﹂櫌銆佸鍥借瀛﹂櫌璇█瀛︾甯堢敓鍙傚姞銆傘銆瀹瑰畯鍦ㄦ姤鍛婁腑鍒嗕韩浜嗗涔犱範杩戝钩鎬讳功璁板叧浜庤瑷鏂囧寲閲嶈璁鸿堪鐨勪綋浼氾紝浠嬬粛浜嗚瑷鏂囧瓧宸ヤ綔鐨勬硶寰嬫硶瑙勫拰鏂归拡鏀跨瓥锛屽寤鸿涓庡浗瀹跺疄鍔涘湴浣嶅尮閰嶇殑璇█寮哄浗浣滀簡璇︾粏闃愯堪銆傚ス浠庡巻鍙层佸浗鎯呫佷笘鐣屼笁涓淮搴﹀鍥藉璇█鏂囧瓧鏀跨瓥杩涜鍏ㄩ潰鐨勫垎鏋愶紝姊崇悊浜嗘垜鍥借瑷鏂囧瓧鏀跨瓥鐨勬紨鍙樺巻绋嬶紝寮鸿皟浜嗚瑷鏂囧瓧鍦ㄤ紶鎵挎枃鍖栥佷績杩涙皯鏃忓洟缁撲腑鐨勯噸瑕佷綔鐢ㄣ傝繖绉嶅缁村害鐨勮В璇绘湁鍔╀簬鎴戞牎甯堢敓鍏ㄩ潰鐞嗚В鍥藉璇█鏂囧瓧鏀跨瓥鐨勯噸瑕佹у拰澶嶆潅鎬с傘銆璁插骇缁撴潫鍚庯紝鎴戞牎甯堢敓鍥寸粫璇█鏂囧瓧鏀跨瓥鍐呭涓庡鎵闀胯繘琛屼簡娣卞叆浜ゆ祦銆傛娆¤搴т负鎴戞牎甯堢敓鎻愪緵浜嗗叏闈㈠涔犲浗瀹惰瑷鏂囧瓧鏀跨瓥鐨勬満浼氾紝涔熻甯堢敓瀵瑰浗瀹惰瑷鏂囧瓧鏀跨瓥鏈変簡鏇存繁鍒荤殑璁よ瘑锛屽濡備綍鍦ㄦ柊鏃朵唬鑳屾櫙涓嬫帹骞挎櫘鍙婂浗瀹堕氱敤璇█鏂囧瓧锛屾彁鍗囧浗姘戣

  • 绗叚灞婂叏鍥藉彜鍏告暀鑲茶鍧涙毃绗竷灞婂崕澶忓彜鍏告暀鑲茬爺绌跺棰佸鍏哥ぜ鍦ㄦ垜鏍′妇琛岋紙鍥撅級

    銆銆11鏈30鏃ヨ嚦12鏈1鏃ワ紝绗叚灞婂叏鍥藉彜鍏告暀鑲茶鍧涙毃绗竷灞婂崕澶忓彜鍏告暀鑲茬爺绌跺棰佸鍏哥ぜ鍦ㄦ垜鏍′妇琛屻傛湰灞婅鍧涚敱鎴戞牎涓庢箹鍗楀笀鑼冨ぇ瀛﹀彜鍏告暀鑲茬爺绌朵腑蹇冨叡鍚屼富鍔炪傛潵鑷腑鍥戒汉姘戝ぇ瀛︺佹箹鍗楀笀鑼冨ぇ瀛︺佸寳浜ぇ瀛︺佸悓娴庡ぇ瀛︺佹禉姹熷ぇ瀛︺佹竻鍗庡ぇ瀛︺佸寳浜笀鑼冨ぇ瀛︺佸崕涓滃笀鑼冨ぇ瀛︺佸崕鍗楀笀鑼冨ぇ瀛︺佷腑澶皯鏃忓ぇ瀛︺佸鏃﹀ぇ瀛︺佷腑灞卞ぇ瀛︺佹箹鍗楀ぇ瀛︺佹渤鍖楀ぇ瀛︺佸崡浜笀鑼冨ぇ瀛︺佸箍瑗垮笀鑼冨ぇ瀛︺佹洸闃滃笀鑼冨ぇ瀛︺佹柊鐤嗗笀鑼冨ぇ瀛︺佽タ瀹変氦閫氬ぇ瀛︺佹禉姹熷伐鍟嗗ぇ瀛︺侀娓腑鏂囧ぇ瀛︺佸彴婀惧笀鑼冨ぇ瀛︾瓑鍥藉唴澶栭珮鏍″拰绉戠爺鏈烘瀯鐨120浣欏悕涓撳瀛﹁呭拰鐮旂┒鐢熷弬浼氥傘銆寮骞曞紡涓婏紝鎴戞牎鍓牎闀胯垝蹇楀畾鏁欐巿鑷磋緸銆備粬浠嬬粛浜嗘垜鏍$殑鍘嗗彶娌块潻涓庡鏈垚灏憋紝鎸囧嚭浼犵粺灏卞儚娴佹穼鍦ㄦ垜浠韩涓婄殑琛娑诧紝鍙ゅ吀鏁欒偛鏄汉绫绘枃鏄庣殑閲嶈璧风偣锛屽浜庢瀯寤轰腑鍥芥暀鑲插鑷富鐭ヨ瘑浣撶郴鍏锋湁閲嶈鎰忎箟銆傘銆婀栧崡甯堣寖澶у鏁欒偛绉戝瀛﹂櫌闄㈤暱鍒橀搧鑺宠嚧杈炪備粬閫氳繃鐢熷姩鐨勬渚嬶紝娣卞埢闃愯堪浜嗗彜鍏告暀鑲茬殑鐙壒浠峰间笌娣辫繙褰卞搷銆備粬璁や负锛屽彜鍏告暀鑲茬殑鏍规湰鐩殑骞堕潪鍗曠函閽荤爺鍙ょ睄锛岃屾槸瑕佹綔绉婚粯鍖栧湴濉戦犳垜浠殑鐢熷懡鏂瑰紡锛岃鎴戜滑浼橀泤銆佷粠瀹瑰湴娲诲湪瀹藉箍鐨勫ぉ鍦颁笌鏃朵唬涔嬩腑銆傘銆鐜板満涓捐浜嗗崕澶忓彜鍏告暀鑲茬爺绌跺棰佸鍏哥ぜ銆傛湰娆″緛鏂囧叡鏀跺埌鏉ョ108绡囷紝缁忚繃璇勫浼氳鐪熼伌閫夛紝璇勯夊嚭10绡囦紭绉

  • 鎴戞牎鎵垮姙娴欐睙鐪佹硶瀛︿細鍥介檯娉曞鐮旂┒浼氭崲灞婂ぇ浼氭毃2024骞村害瀛︽湳骞翠細锛堝浘锛

    銆銆11鏈23鏃ヤ笅鍗堬紝娴欐睙鐪佹硶瀛︿細鍥介檯娉曞鐮旂┒浼氭崲灞婂ぇ浼氭毃2024骞村害瀛︽湳骞翠細鍦ㄦ箹宸炴垚鍔熶妇鍔炪傛娆′細璁敱娴欐睙鐪佹硶瀛︿細鍥介檯娉曞鐮旂┒浼氫富鍔烇紝鎴戞牎缁忔祹绠$悊瀛﹂櫌锛堟矆瀹舵湰娉曞闄級鎵垮姙锛屽苟鐢辨禉姹熷ぇ瀛﹀浗闄呮硶鐮旂┒鎵銆佹禉澶у畞娉㈢悊宸ュ闄紶濯掍笌娉曞闄佷箣姹熼潚骞存硶娌诲缓璁句笌鍒跺害鍒涙柊鐮旂┒涓績鍜屾禉姹熶笢鍞愪汉寰嬪笀浜嬪姟鎵鍏卞悓鍗忓姙銆傚浜ら儴鍥介檯娉曞挩璇㈠鍛樹細涓讳换濮斿憳銆佸浗闄呭父璁句徊瑁佹硶闄徊瑁佸憳銆佹渶楂樹汉姘戞硶闄㈠浗闄呭晢浜嬩笓瀹跺鍛樹細涓撳濮斿憳銆佸浗瀹堕珮绔櫤搴撴姹夊ぇ瀛﹀浗闄呮硶娌荤爺绌堕櫌鐗硅仒鏁欐巿銆佸崥澹爺绌剁敓瀵煎笀榛勬儬搴凤紝娴欐睙鐪佸徃娉曞巺鍏氬濮斿憳銆佸壇鍘呴暱寰愭檽娉紝鎴戞牎鍓牎闀胯垝蹇楀畾锛屾禉姹熺渷娉曞浼氬壇浼氶暱銆佹禉姹熷ぇ瀛﹀厜鍗庢硶瀛﹂櫌闄㈤暱銆佹暀鎺堥噾褰勾锛屾禉姹熷ぇ瀛︽眰鏄闄㈠父鍔″壇闄㈤暱銆佹禉姹熷ぇ瀛﹀厜鍗庢硶瀛﹂櫌鍓櫌闀胯档楠忕瓑鍑哄腑澶т細銆傛潵鑷禉姹熷ぇ瀛︺佹禉姹熷伐鍟嗗ぇ瀛︺佸畞娉㈠ぇ瀛︺佹澀宸炲笀鑼冨ぇ瀛︺佹禉澶у畞娉㈢悊宸ュ闄佹禉姹熻瀵熷闄佹禉姹熷鍥借瀛﹂櫌銆佹禉姹熻储缁忓ぇ瀛︺佷腑鍥借閲忓ぇ瀛︾殑涓撳瀛﹁呯瓑91浜哄拰娴欐睙鐪佹硶瀛︿細鍥介檯娉曞鐮旂┒浼氥佹禉姹熷ぇ瀛﹀浗闄呮硶鐮旂┒鎵銆佷箣姹熼潚骞存硶娌诲缓璁句笌鍒跺害鍒涙柊鐮旂┒涓績銆佹禉姹熷叚鍜屽緥甯堜簨鍔℃墍銆佹禉姹熶笢鍞愪汉寰嬪笀浜嬪姟鎵绛夊崟浣嶄互鍙婃禉姹熷ぇ瀛﹀厜鍗庢硶瀛﹂櫌锛屾澀宸炲笀鑼冨ぇ瀛︽矆閽у剴娉曞闄紝娴欐睙鐞嗗伐澶у娉曟斂銆佹柊浼犲闄紝鎴戞牎缁忔祹

瀛︽湳淇℃伅

Academic 鏇村+
  • 鏁板瀛︾2024绯诲垪瀛︽湳鎶ュ憡涔嬩笁鍗佷節

    銆銆鎶ュ憡棰樼洰锛欳ontent systems and graded cellular bases of cyclotomic KLR algebras銆銆鎶ュ憡浜猴細鑳″郴鏁欐巿锛堝寳浜悊宸ュぇ瀛︼級銆銆鏃堕棿锛2024骞12鏈12 鏃 16:00-17:00銆銆鍦扮偣锛氱悊瀛﹂櫌1鍙锋ゼ1-301銆銆鎽樿锛欳yclotomic KLR algebras are a family of remarkable finite dimensional $Z$-graded algebras which have found many important applications in representation theory, categorification of quantum groups and low dimensional topology. In the case of type A, Mathas and I have constructed homogeneous cellular bases for these algebras. In this talk, I will introduce

  • Tea Time瀛︽湳娲诲姩绯诲垪閭璇锋姤鍛婏紙248锛

    銆銆鎶ュ憡棰樼洰锛氭晱鎰熼噾灞為攤鐢垫睜鏉愭枡寰昂搴︾爺绌躲銆鎶ュ憡浜猴細鍒樿偛浜紙娴欐睙宸ヤ笟澶у锛夈銆鏃堕棿锛12鏈12鏃ワ紙鏄熸湡鍥涳級10:00-11:00銆銆鍦扮偣锛氱悊瀛﹂櫌1-401銆銆鎶ュ憡鍐呭锛氥銆鏈姤鍛婂皢鍥寸粫楂樻瘮鑳介噾灞為攤鐢垫睜涓姛鑳藉鍚堢晫闈㈢殑寰鏋勬晥鍏崇郴鐮旂┒锛岄拡瀵圭晫闈㈠姛鑳藉鍚堢粨鏋勭殑褰㈡垚鏈虹悊涓庢紨鍙樿寰嬬瓑鍏抽敭绉戝闂锛屼粠绾崇背灏哄害璁ㄨ骞舵彮绀洪噾灞為攤浜屾鐢垫睜涓姛鑳藉鍚堢晫闈綔鐢ㄦ満鍒讹紝灞曠ず鏁忔劅鐢垫睜鏉愭枡寰瑙f瀽鍙婅皟鎺х殑鐗硅壊绯诲垪鐮旂┒锛1.寤虹珛浜嗚嚜缁勮鍗曞垎瀛愬眰鏋勭瓚楂樼ǔ瀹氭ч攤闃虫瀬鐣岄潰鐨勬櫘閫傛ф柟娉曪紝棣栨鍙戠幇闀跨▼鏈夊簭鍒嗗瓙杩樺師鐢佃В璐ㄧ殑鐣岄潰鍌寲浣滅敤锛岃В鍐充簡鐢佃В璐ㄤ笉鍙帶鍒嗚В鐨勭獊鍑洪毦棰樸2.鍙戝睍浜嗘晱鎰熼珮鍒嗗瓙鍙婇噾灞為攤鐣岄潰绾崇背灏哄害鍙鍖栫殑琛ㄥ緛鏂规硶锛岀巼鍏堜互瀹為獙楠岃瘉浜嗚繎50骞寸殑鑱氬悎鐗╁浐鎬佺數瑙h川鐣岄潰缁撴瀯鐨勭悊璁洪娴嬨3.鎻愬嚭浜嗗姛鑳藉鍚堢粨鏋勫鐣岄潰鐨勭ǔ瀹氭満鍒讹紝鑾峰緱浜嗘渶楂樺惊鐜ǔ瀹氭т箣涓鐨勯珮姣旇兘閲戝睘閿傜數姹犮傘銆鎶ュ憡浜虹畝浠嬶細銆銆娴欐睙宸ヤ笟澶у鏉愭枡绉戝涓庡伐绋嬪闄㈠壇闄㈤暱锛屾暀鎺堬紝鍗氬+鐢熷甯堬紝鍥藉绾ч潚骞翠汉鎵嶃傛湰绉戞瘯涓氫簬娴欐睙澶у绔哄彲妗㈣崳瑾夊闄紝娴欐睙澶у楂樺垎瀛愭潗鏂欏崥澹浣嶏紝2018骞6鏈堝姞鍏ユ禉姹熷伐涓氬ぇ瀛︽潗鏂欏闄備富瑕佺爺绌舵柟鍚戜负楂樻瘮鑳戒簩娆$數姹犲姛鑳藉鍚堢晫闈㈢殑绾崇背灏哄害缁撴瀯婕斿彉瑙勫緥涓庤皟

  • 鏁板瀛︾2024绯诲垪瀛︽湳鎶ュ憡涔嬩笁鍗佸叓

    銆銆鎶ュ憡棰樼洰锛歐eighted norm inequalities for singular integral operators controlled by different norms銆銆鎶ュ憡浜猴細鍚存柊宄版暀鎺堬紙鍖椾含鐭夸笟澶у锛夈銆鏃堕棿锛2024骞12鏈11 鏃 14:00-16:00銆銆鍦扮偣锛氳吘璁細璁細431-325-193銆銆鎽樿锛歂agel, Ricci, Stein and Wainger introduced and studied two classes of kernels, which locally characterize the kernels of the composition operators arising in the $\bar{\partial}$-Neumann problem in complex analysis. We introduce and study a maximal function associated with a sub-collection of product rectangles. This maximal func

  • 婀栧路鍗█绗25璁

    銆銆涓婚锛氱暐璋堟棩鏈殑瀹嬮煹鏂囧寲閬楀瓨銆銆鏃堕棿锛2024骞12鏈4鏃ワ紙鍛ㄤ笁锛14:00銆銆鍦扮偣锛氬鍥借瀛﹂櫌4-217銆銆涓昏浜虹畝浠嬶細姹熼潤锛屽コ锛屾禉姹熷ぇ瀛﹀崥澹傜幇涓烘禉姹熷伐鍟嗗ぇ瀛︿笢鏂硅瑷涓庡摬瀛﹀闄㈡暀鎺堛佸崥瀵笺侀櫌闀裤傚吋浠讳腑鍥芥棩鏈彶瀛︿細鍓細闀裤佹禉姹熺渷涓棩鍏崇郴鍙插浼氫細闀裤備富瑕佺爺绌堕鍩熸湁锛氫腑鏃ユ枃鍖栦氦娴佸彶銆佹棩鏈枃鍖栫瓑銆傛浘涓绘寔鍥藉绀剧鍩洪噾閲嶇偣椤圭洰1椤广佹暀鑲查儴椤圭洰1椤广佺渷绀剧瑙勫垝閲嶇偣椤圭洰3椤广佹澀宸炲競绀剧瑙勫垝閲嶇偣椤圭洰3椤圭瓑銆傚嚭鐗堢殑涓昏钁椾綔鏈夈婅荡鏃ュ畫鍍ф棤瀛︾鍏冪爺绌躲嬨併婃棩钘忓畫鍏冪鍍уⅷ杩归夌紪銆嬬瓑6閮ㄣ傚湪銆婃禉姹熷ぇ瀛﹀鎶ワ紙浜烘枃绀剧鐗堬級銆嬨婃枃鐚嬨婃棩璇涔犱笌鐮旂┒銆嬨婃禉姹熺ぞ浼氱瀛︺嬬瓑鏉傚織涓婂彂琛ㄨ鏂50浣欑瘒銆

濯掍綋鐪嬪笀闄

Media 鏇村+

鐑偣涓撻

Special 鏇村+